Effect of pooling samples on the efficiency of comparative studies using microarrays

نویسندگان

  • Shu-Dong Zhang
  • Timothy W. Gant
چکیده

MOTIVATION Many biomedical experiments are carried out by pooling individual biological samples. However, pooling samples can potentially hide biological variance and give false confidence concerning the data significance. In the context of microarray experiments for detecting differentially expressed genes, recent publications have addressed the problem of the efficiency of sample pooling, and some approximate formulas were provided for the power and sample size calculations. It is desirable to have exact formulas for these calculations and have the approximate results checked against the exact ones. We show that the difference between the approximate and the exact results can be large. RESULTS In this study, we have characterized quantitatively the effect of pooling samples on the efficiency of microarray experiments for the detection of differential gene expression between two classes. We present exact formulas for calculating the power of microarray experimental designs involving sample pooling and technical replications. The formulas can be used to determine the total number of arrays and biological subjects required in an experiment to achieve the desired power at a given significance level. The conditions under which pooled design becomes preferable to non-pooled design can then be derived given the unit cost associated with a microarray and that with a biological subject. This paper thus serves to provide guidance on sample pooling and cost-effectiveness. The formulation in this paper is outlined in the context of performing microarray comparative studies, but its applicability is not limited to microarray experiments. It is also applicable to a wide range of biomedical comparative studies where sample pooling may be involved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Pooling Samples on the Performance of Classification Algorithms: A Comparative Study

A pooling design can be used as a powerful strategy to compensate for limited amounts of samples or high biological variation. In this paper, we perform a comparative study to model and quantify the effects of virtual pooling on the performance of the widely applied classifiers, support vector machines (SVMs), random forest (RF), k-nearest neighbors (k-NN), penalized logistic regression (PLR), ...

متن کامل

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Comparative Studies on Effect of Pretreatment of Rice Husk for Enzymatic Digestibility and Bioethanol Production

Three common pretreatment processes based on dilute sulfuric acid, dilute sodium hydroxide and heat treatment (autoclaving) followed by enzymatic hydrolysis were evaluated to provide comparative performance data. Among them, the best result was obtained when the pretreatment of rice husk was carried out with 3% of NaOH solution. The pretreatment of rice husk with NaOH substantially increased th...

متن کامل

The Comparative Study of the Iranian EFL Learners Vocabulary Learning through Two Different Formats: Paper & Pencil vs. Software

This study aimed to investigate the effect of using vocabulary software on the vocabulary learning of Iranian EFL learners. Participants of the study were 54 intermediate-level students (23 males and 31 females) learning English as a foreign language in Mehr Institute in Izeh who were selected after taking the Nelson English Language Test as a proficiency test. They were randomly divided into t...

متن کامل

Early detection of MS in fMRI images using deep learning techniques

Introduction & Objective:MS is a disease of the central nervous system in which the body makes a defensive attack on its tissues. The disease can affect the brain and spinal cord, causing a wide range of potential symptoms, including balance, movement and vision problems. MRI and fMRI images are a very important tool in the diagnosis and treatment of MS. The aim of this study was to provide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioinformatics

دوره 21 24  شماره 

صفحات  -

تاریخ انتشار 2005